Penjadwalan / Antrian CPU

Unknown Wednesday, March 7, 2012
A.           Konsep Dasar
Dalam pemroses tunggal, hanya satu proses yang dapat dijalankan pada saat tertentu, sedangkan yang lain harus menunggu CPU bebas dan dijadwal ulang. Multiprogramming merupakan cara untuk menjalankan proses setiap waktu sehingga memaksimalkan penggunaan CPU.
Penjadwalan merupakan salah satu fungsi dasar dari sistem operasi. Hampir semua sumber daya komputer dijadwalkan sebelum digunakan.

B.            CPU-I/O Burst Cycle
Kesuksesan penjadwaln CPU tergantung dari observasi proses-proses. Pengeksekusian proses terdiri putaran ekseskusi CPU dan penungguan I/O. Eksekusi proses dimulai dari CPU burst, yaitu diikuti oleh I/O burst kemudian diikuti CPU burst lainnya lalu I/O burst lainnya dan begitu seterusnya.
Gambar 1 Urutan pergantian CPU Burst dengan I/O Burst


C.           Penjadwalan CPU
Ketika CPU mengalami waktu idle, sistem operasi harus memilih salah satu proses untuk masuk kedalam antrian yang akan untuk dieksekusi. Pemilihan tersebut dilakukan oleh penjadwal jangka pendek atau penjadwal CPU. [Bambang2002] Ada tiga tipe penjadwal yang berada bersama pada sistem operasi kompleks, yaitu :
1.             Penjadwal jangka pendek yang bertugas menjadwalkan alokasi pemroses di antara proses-proses yang telah siap di memori utama.
2.             Penjadwal jangka menengah akan menangani serta mengendalikan transisi dari suspended-toready dari proses-proses swapping.
3.             Penjadwal jangka panjang bekerja terhadap antrian batch dan memilih batch berikutnya yang harus dieksekusi.
Gambar 2 Tipe-tipe penjadwalan
Penjadwalan memilih proses yang ada di memori serta siap untuk dieksekusi, dan mengalokasikan CPU untuk mengeksekusinya. Penjadwalan CPU mungkin akan dijalankan ketika proses dalam keadaan:
1.             Berubah dari running ke waiting state.
2.             Berubah dari running ke ready state.
3.             Berubah dari waiting ke ready.
4.             Terminates.
Penjadwalan nomor 1 dan 4 bersifat non-preemptive atau cooperative sedangkan lainnya preemptive. Dalam penjadwalan non-preemptive sekali CPU telah dialokasikan untuk sebuah proses, maka tidak dapat di ganggu, penjadwalan model seperti ini digunakan oleh Windows 3.x; Windows 95 telah menggunakan penjadwalan preemptive yaitu saat suatu proses sedang dieksekusi, CPU dapat diambil alih oleh proses lain sehingga proses di tunda dan dilanjutkan kembali hingga proses selesai.



D.           Kriteria Penjadwalan
Setiap algoritma penjadwalan dapat berbeda dengan nilai yang berbeda dan sistem komputer yang berbeda. Dalam penjadwalan CPU diperlukan beberapa kriteria diantaranya adalah:
1.             CPU Utilization. Kita menginginkan kerja CPU sesibuk mungkin. Konsepnya pemanfaatan CPU mempunyai jangkauan dari 0 sampai 100 persen. Di sistem yang sebenarnya mungkin hanya mempunyai jangakuan dari 40 (untuk pemanggilan ringan sistem) sampai 90 persen (pemanggilan berat sistem).
2.             Throughput. Pengukuran kinerja CPU adalah banyaknya proses yang diselesaikan per satuan waktu. Jika kita mempunyai beberapa proses yang sama dan memiliki beberapa algoritma penjadwalan yang berbeda, hasil kinerja bisa menjadi salah satu kriteria penilaian, dimana algoritma yang menyelesaikan proses terbanyak mungkin yang terbaik.
3.             Turnaround Time. Dari sudut pandang proses tertentu, kriteria yang penting adalah berapa lama untuk mengeksekusi proses tersebut. Memang, lama pengeksekusian sebuah proses sangat tergantung dari hardware yang dipakai, namun kontribusi algoritma penjadwalan tetap ada dalam lama waktu yang dipakai untuk menyelesaikan sebuah proses. Misal, kita memilki sistem komputer yang identik dan proses-proses yang identik pula, namun kita memakai algoritma yang berbeda, algoritma yang mampu menyelesaikan proses yang sama dengan waktu yang lebih singkat mungkin lebih baik dari algoritma yang lain. Interval waktu yang diijinkan dengan waktu yang dibutuhkan untuk menyelesaikan sebuah proses disebut turnaround time.Turnaround time adalah jumlah periode tunggu untuk dapat ke memori, menunggu di ready queue, eksekusi CPU, dan melakukan operasi I/O atau waktu yang dihabiskan dari saat program atau job mulai masuk sistem sampai proses diselesaikan sistem. Turnaround = waktu eksekusi + waktu menunggu
4.             Waiting Time. Algoritma penjadwalan CPU tidak mempengaruhi waktu untuk melaksanakan proses tersebut atau I/O, karena hanya mempengaruhi jumlah waktu yang dibutuhkan proses diantrian ready. Waiting time adalah jumlah waktu yang dbutuhkan proses di antrian ready.
5.             Response time. Di sistem yang interaktif, turnaround time mungkin bukan waktu yang terbaik untuk kriteria. Sering sebuah proses dapat memproduksi output di awal, dan dapat meneruskan hasil yang baru sementara hasil yang sebelumnya telah diberikan ke pengguna. ukuran lain adalah waktu dari pengiriman permintaan sampai respon yang pertama diberikan. Hal ini disebut response time, yaitu waktu untuk memulai memberikan respon, tetapi bukan waktu yang dipakai output untuk respon tersebut. Turnround time umumnya dibatasi oleh kecepatan peralatan keluaran. Ada dua jenis response time berdasarkan penggunaannya pada sistem interaktif dan sistem waktu nyata (real time), yaitu:
a.             Terminal response time merupakan response time pada sistem interaktif sebagai waktu yang dihabiskan dari saat karakter terakhir dari perintah dimasukkan atau transaksi sampai hasil pertama muncul di layar.
b.             Event response time merupakan response time pada sistem waktu nyata sebagai waktu dan kejadian (internal/eksternal) sampai instruksi pertama rutin layanan yang dimaksud dieksekusi.
Sebaiknya ketika kita akan membuat algoritma penjadwalan yang dilakukan adalah memaksimalkan penggunaan CPU dan throughput, dan meminimalkan turnaround time, waiting time, dan response time.


E.            Algoritma Penjadwalan
Masalah penjadwaln CPU adalah memutuskan proses mana yang berada di dalam antrian ready akan dialokasikan ke CPU. Ada beberapa algoritma penjadwalan CPU beberapa diantaranya akan di jelaskan pada bagian berikut ini.
1.             First-Come First-Served (FCFS)
Algoritma ini merupakan algoritma penjadwalan yang paling sederhana yang digunakan CPU. Dengan menggunakan algoritma ini seiap proses yang berada pada status ready dimasukkan ke dalam antrian FIFO sesuai dengan waktu kedatangannya. Proses yang tiba terlebih dahulu yang akan dieksekusi terlebih dahulu.
Misalnya ada tiga buah proses yang datang secara bersamaan yaitu pada 0 ms, P1 memiliki burst time 24 ms, P2 memiliki burst time 5 ms, P3 memiliki burst time 3 ms. Hitunglah wating time rata-rata dan turnaround time (burst time + waiting time) dari ketiga proses tersebut dengan menggunakan algoritma FCFS.
Proses Burst time
P1 24 ms
P2 5 ms
P3 3 ms
Waiting time untuk p1 adalah 0 ms (P1 tidak perlu menunggu), sedangkan untuk p2 adalah sebesar 24 ms (menunggu P1 selesai) dan untuk p3 sebesar 29 ms (menunggu P1 dan P2 selesai). Waiting time rata-ratanya adalah sebesar (0+24+29)/3 = 17,6 ms.
Turnaround time untuk P1 sebesar 24 ms, sedangkan untuk P2 sebesar 29 ms (dihitung dari awal kedatangan P2 hingga selesai dieksekusi), untuk p3 sebesar 32 ms. Turnaround time rata-rata untuk ketiga proses tersebut adalah (24+29+32)/3 = 28,3 ms.
Kelemahan dari algoritma ini:
a.             Waiting time rata-ratanya cukup lama.
b.             Terjadinya convoy effect, yaitu proses-proses menunggu lama untuk menunggu satu proses besar yang sedang dieksekusi oleh CPU.
Algoritma ini juga menerapkan konsep non-preemptive, yaitu setiap proses yang sedang dieksekusi oleh CPU tidak dapat di-interrupt oleh proses yang lain.

2.             Shortest-Job First (SJF)
Algoritma ini mempunyai cara penjadwalan yang berbeda dengan FCFS. Dengan algoritma ini maka setiap proses yang ada di antrian ready akan dieksekusi berdasarkan burst time terkecil. Hal ini mengakibatkan waiting time yang pendek untuk setiap proses dan karena hal tersebut maka waiting time rata-ratanya juga menjadi pendek, sehingga dapat dikatakan bahwa algoritma ini adalah algoritma yang optimal.
Ada beberapa kekurangan dari algoritma ini yaitu:
a.             Kesulitan untuk memprediksi burst time proses yang akan dieksekusi selanjutnya .
b.             Proses yang mempunyai burst time yang besar akan memiliki waiting time yang besar pula karena yang dieksekusi terlebih dahulu adalah proses dengan burst time yang lebih kecil.
Algoritma ini dapat dibagi menjadi dua bagian yaitu:
a.             Preemptive. Jika ada proses yang sedang dieksekusi oleh CPU dan terdapat proses di antrian ready dengan burst time yang lebih kecil daripada proses yang sedang dieksekusi tersebut, maka proses yang sedang dieksekusi oleh CPU akan digantikan oleh proses yang berada di antrian ready tersebut. Preemptive SJF sering disebut juga Shortest-Remaining-Time-First scheduling.
b.            Non-preemptive. CPU tidak memperbolehkan proses yang ada di antrian ready untuk menggeser proses yang sedang dieksekusi oleh CPU meskipun proses yang baru tersebut mempunyai burst time yang lebih kecil.
Misalnya ada empat buah proses dengan masing-masing waktu kedatangan burst time di jelaskan pada tabel di bawah ini. Hitunglah waiting time rata-rata dan turnaround time dari keempat proses tersebut dengan mengunakan algoritma SJF.
Proses       Arrival time     Burst Time
P1             0 ms                 7 ms
P2             2 ms                 4 ms
P3             4 ms                 1 ms
P4             5 ms                 4 ms
Solusi Preemptive:
Rata-rata waiting time adalah (9 + 1 + 0 +2)/4 = 3, dimana :
P1: (0-0+11-2) = 9
P2: (2-2+5-4) = 1
P3: (4-4) = 0
P4: (7-5) = 2
Rata-rata turnaround time adalah ((9+7)+(1+4)+(0+1)+(4+2))/4 = 7
Solusi Non-Preemptive:
Rata-rata waiting time adalah (0 + 6 + 3 + 7)/4 = 4, dimana:
P1: (0-0) = 0
P2: (8-2) = 6
P3: (7-4) = 3
P4: (12-5) = 7
Rata-rata turnaround time adalah ((0+7)+(6+4)+(3+1)+(7+4))/4 = 8



3.             Penjadwalan dengan Prioritas
Priority Scheduling merupakan algoritma penjadwalan yang mendahulukan proses dengan nilai prioritas tertinggi. Setiap proses memiliki prioritasnya masing-masing. Prioritas suatu proses dapat ditentukan melalui beberapa karakteristik antara lain:
a.             Batas waktu
b.             Kebutuhan Memori
c.             Akses file
d.            Perbandingan antara I/O Burst dengan CPU Burst
e.             Tingkat kepentingan proses
Penjadwalan dengan prioritas juga dapat dijalankan secara preemptive maupun non-preemptive. Pada preemptive, jika ada suatu proses yang baru datang memiliki prioritas yang lebih tinggi daripada proses yang sedang dijalankan, maka proses yang sedang berjalan tersebut dihentikan, lalu CPU dialihkan untuk proses yang baru datang tersebut. Sementara itu, pada non-preemptive, proses yang baru datang tidak dapat menganggu proses yang sedang berjalan, tetapi hanya diletakkan di depan antrian.
Kelemahan pada penjadwalan prioritas adalah dapat terjadinya indefinite blocking (starvation) yaitu suatu proses dengan prioritas yang rendah memiliki kemungkinan untuk tidak dieksekusi jika terdapatproses lain yang memiliki prioritas lebih tinggi darinya. Solusi dari permasalahan ini adalah aging, yaitu meningkatkan prioritas dari setiap proses yang menunggu dalam antrian secara bertahap.
Misalnya:
Proses       Burst time       Prioritas
P1             10                    3
P2             1                      1
P3             2                      4
P4             1                      5
P5             5                      2
Diagram Gantt adalah sebagai berikut:
Rata-rata waiting time adalah (6+0+16+18+1)/5 = 8.2
Rata-rata turnaround time adalah ((6+10)+(0+1)+(16+2)+(18+1)+(1+5))/5 = 12
4.             Round Robin
Algoritma ini didesin untuk sistem time-sharing. Proses akan mendapat jatah sebesar time quantum dengan nilai quantum umumnya sebesar 10-100 ms. Jika time quantum-nya habis atau proses sudah selesai CPU akan dialokasikan ke proses berikutnya. Tentu proses ini cukup adil karena tak ada proses yang diprioritaskan, semua proses mendapat jatah waktu yang sama dari CPU (1/n), dan tak akan menunggu lebih lama dari (n-1)/q.
Algoritma ini sepenuhnya bergantung besarnya time quantum. Jika terlalu besar, algoritma ini akan sama saja dengan algoritma first-come first-served. Jika terlalu kecil, akan semakin banyak peralihan proses sehingga banyak waktu terbuang.
Permasalahan utama pada Round Robin adalah menentukan besarnya time quantum. Jika time quantum yang ditentukan terlalu kecil, maka sebagian besar proses tidak akan selesai dalam 1 time quantum. Hal ini tidak baik karena akan terjadi banyak switch, padahal CPU memerlukan waktu untuk beralih dari suatu proses ke proses lain (disebut dengan context switches time). Sebaliknya, jika time 6 quantum terlalu besar, algoritma Round Robin akan berjalan seperti algoritma First Come First Served. Time quantum yang ideal adalah jika 80% dari total proses memiliki CPU burst time yang lebih kecil dari 1 time quantum.
Misalnya ada tiga proses dengan masing-masing mendapatkan waktu quantum adalah 4 ms, maka P1 mendapatkan 4 ms pertama. Karena membutuhkan 20 ms lagi, sesudah quantum pertama P1 di preemptive dan CPU memberikan proses berikutnya ke proses P2 dan P2 tidak memerlukan 4 ms, P2 selesai sebelum jatah quantumnya habis, kemudian CPU memberikan ke proses berikutnya yaitu P3. Ketika setaiap proses meneriman satu quantum, CPU kembali ke proses P1 untuk tambahan waktu quantum.
Proses       Burst time
P1             24 ms
P2             3 ms
P3             3 ms
Rata-rata waiting time adalah (6+4+7)/3 = 5.66
Rata-rata turnaround time adalah ((6+24)+(4+3)+(7+3))/3 = 15.67

5.             Antrian Multilevel (Multilevel Queue)
Ide dasar dari algoritma ini adalah berdasarkan pada sistem prioritas proses. Prinsipnya adalah, jika setiap proses dapat dikelompokkan berdasarkan prioritasnya, maka akan didapati queue seperti pada gambar berikut:
Gambar 3 Penjadwalan multilevel queue
Dari gambar tersebut terlihat bahwa akan terjadi pengelompokan-pengelompokan proses-proses berdasarkan prioritasnya. Kemudian muncul gagasan untuk menganggap kelompok-kelompok tersebut sebagai sebuah antrian-antrian kecil yang merupakan bagian dari antrian keseluruhan proses, yang sering disebut dengan algoritma multilevel queue.
Dalam hal ini dapat dilihat bahwa seolah-olah algoritma dengan prioritas yang dasar adalah algoritma multilevel queue dimana setiap antrian akan berjalan dengan algoritma FCFS dan dapat diketahui bahwa algoritma FCFS memiliki banyak kelemahan, oleh karena itu dalam prakteknya, algoritma multilevel queue memungkinkan adanya penerapan algoritma internal dalam masing-masing subantriannya untuk meningkatkan kinerjanya, dimana setiap sub-antrian bisa memiliki algoritma internal yang berbeda.
Berawal dari priority scheduling, algoritma ini pun memiliki kelemahan yang sama dengan priority scheduling, yaitu sangat mungkin bahwa suatu proses pada queue dengan prioritas rendah bisa saja tidak mendapat jatah CPU. Untuk mengatasi hal tersebut, salah satu caranya adalah dengan memodifikasi algoritma ini dengan adanya jatah waktu maksimal untuk tiap antrian, sehingga jika suatu antrian memakan terlalu banyak waktu, maka prosesnya akan dihentikan dan digantikan oleh antrian dibawahnya, dan tentu saja batas waktu untuk tiap antrian bisa saja sangat berbeda tergantung pada prioritas masing-masing antrian.


6.             Multilevel Feedback Queue
Algoritma ini mirip sekali dengan algoritma Multilevel Queue. Perbedaannya ialah algoritma ini mengizinkan proses untuk pindah antrian. Jika suatu proses menyita CPU terlalu lama, maka proses itu akan dipindahkan ke antrian yang lebih rendah. Ini menguntungkan proses interaksi, karena proses ini hanya memakai waktu CPU yang sedikit. Demikian pula dengan proses yang menunggu terlalu lama. Proses ini akan dinaikkan tingkatannya.
Biasanya prioritas tertinggi diberikan kepada proses dengan CPU burst terkecil, dengan begitu CPU akan dimanfaatkan penuh dan I/O dapat terus sibuk. Semakin rendah tingkatannya, panjang CPU burst proses juga semakin besar.
Algoritma ini didefinisikan melalui beberapa parameter, antara lain:
a.             Jumlah antrian
b.             Algoritma penjadwalan tiap antrian
c.             Kapan menaikkan proses ke antrian yang lebih tinggi
d.            Kapan menurunkan proses ke antrian yang lebih rendah
e.             Antrian mana yang akan dimasuki proses yang membutuhkan
Gambar 4 Antrian multilevel feedback
Dengan pendefinisian seperti tadi membuat algoritma ini sering dipakai. Karena algoritma ini mudah dikonfigurasi ulang supaya cocok dengan sistem. Tapi untuk mengatahui mana penjadwal terbaik, kita harus mengetahui nilai parameter tersebut. Multilevel feedback queue adalah salah satu algoritma yang berdasar pada algoritma mulilevel queue. Perbedaan mendasar yang membedakan multilevel feedback queue dengan multilevel queue biasa adalah terletak pada adanya kemungkinan suatu proses berpindah dari satu antrian ke antrian lainnya, entah dengan prioritas yang lebih rendah ataupun lebih tinggi, misalnya pada contoh berikut.
a.             Semua proses yang baru datang akan diletakkan pada antrian 0 (quantum = 8 ms).
b.             Jika suatu proses tidak dapat diselesaikan dalam 8 ms, maka proses tersebut akan dihentikan dan dipindahkan ke antrian pertama (quantum = 16 ms).
c.             Antrian pertama hanya akan dikerjakan jika tidak ada lagi proses di antrian 0, dan jika suatu proses di antrian pertama 1 tidak selesai dalam 16 ms, maka proses tersebut akan dipindahkan ke antrian kedua.
d.            Antrian kedua akan dikerjakan bila antrian 0 dan 1 kosong, dan akan berjalan dengan algoritma FCFS.
Disini terlihat bahwa ada kemungkinan terjadinya perpindahan proses antar queue, dalam hal ini ditentukan oleh time quantum, namun dalam prakteknya penerapan algoritma multilevel feedback queue akan diterapkan dengan mendefinisikan terlebih dahulu parameter-parameternya, yaitu:
a.             Jumlah antrian
b.             Algoritma internal tiap antrian
c.             Aturan sebuah proses naik ke antrian yang lebih tinggi
d.            Aturan sebuah proses turun ke antrian yang lebih rendah
e.             Antrian yang akan dimasuki tiap proses yang baru datang
Berdasarkan hal-hal di atas maka algoritma ini dapat digunakan secara fleksibel dan diterapkan sesuai dengan kebutuhan sistem. Pada masa sekarang ini algoritma multilevel feedback queue adalah salah satu yang paling banyak digunakan.
Blogger Template by BlogTusts Sticky Widget by Kang Is Published by GBT.

1 comment: